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Overview
Over-constrained ℓ𝒑𝒑-Norm Regression
Given 𝜖𝜖 > 0,𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑 𝑏𝑏 ∈ ℝ𝑛𝑛 where 𝑛𝑛 ≫ 𝑑𝑑, 
compute 𝑥𝑥′ ∈ ℝ𝑑𝑑 such that

𝐴𝐴𝑥𝑥′ − 𝑏𝑏 𝑝𝑝
𝑝𝑝 ≤ 1 + 𝜖𝜖 min

𝑥𝑥∈ℝ𝑑𝑑
𝐴𝐴𝐴𝐴 − 𝑏𝑏 𝑝𝑝

𝑝𝑝 (1)

• 𝑝𝑝 = 2: 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
• 𝑝𝑝 = 1: 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
In this work, we utilize sketching techniques to obtain 
fast solutions to (1), when the input matrix 𝐴𝐴 is a 
Kronecker Product of q smaller matrices. 

Experiments

Given 𝐵𝐵 ∈ ℝ𝑛𝑛×𝑑𝑑 and 𝐶𝐶 ∈ ℝ𝑚𝑚×𝑟𝑟 Kronecker product
𝐴𝐴 = 𝐵𝐵 ⊗ 𝐶𝐶 ∈ ℝ𝑛𝑛𝑛𝑛×𝑑𝑑𝑑𝑑 consists of all 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 entry-wise 
products of the form 𝐵𝐵𝑖𝑖,𝑗𝑗 ⋅ 𝐶𝐶𝑘𝑘,𝑠𝑠

𝑨𝑨 𝑪𝑪𝑩𝑩 ⊗𝒏𝒏𝒏𝒏

𝒅𝒅𝒅𝒅

Kronecker Product Regression arises in Spline Regression, 
Signal Processing, and Multivariate Data fitting. Many 
statistical problems can be modeled as Kronecker product 
regression, such as rank-regression (all-pairs regression 
estimation). 
 Rank Regression: Robust Estimator, minimizing 𝐴̅𝐴𝑥𝑥 − �𝑏𝑏 1

more robust than ℓ1: min 𝐴𝐴𝐴𝐴 − 𝑏𝑏 1.
 Highly successful estimator for regression with both 

heavy tailed and Gaussian error [2]. 
 Downside: requires solving a LP with 𝑛𝑛2constraints. This 

work: we give much faster algorithms!
 Observe: 𝐴̅𝐴 = 𝐴𝐴⊗ 𝟏𝟏 − 𝟏𝟏⊗ 𝐴𝐴 is a Kronecker product! 

More generally, given 𝐴𝐴𝑖𝑖 ∈ ℝ𝑛𝑛𝑖𝑖×𝑑𝑑𝑖𝑖, can define ⊗𝑖𝑖=1
𝑞𝑞 𝐴𝐴𝑖𝑖 ∈

ℝ𝑛𝑛1𝑛𝑛2⋯𝑛𝑛𝑞𝑞×𝑑𝑑1𝑑𝑑2⋯𝑑𝑑𝑞𝑞, and minimize: 
min
𝑥𝑥∈ℝ𝑑𝑑

⊗𝑖𝑖=1
𝑞𝑞 𝐴𝐴𝑖𝑖 𝑥𝑥 − 𝑏𝑏

𝑝𝑝

𝑝𝑝

Even forming A = ⊗𝑖𝑖=1
𝑞𝑞 𝐴𝐴𝑖𝑖 requires ∏𝑖𝑖

𝑞𝑞 𝑛𝑛𝑖𝑖𝑑𝑑𝑖𝑖 time! However, 
[1] shows that a solution 𝑥𝑥𝑥 to (1) can be found in time sublinear 
in the size of A.
Rank Regression: Let 𝐴̅𝐴 ∈ ℝ𝑛𝑛2×𝑑𝑑 be the matrix of all pair-wise 
differences of the rows of 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑑𝑑, and similarly define �𝑏𝑏 ∈
ℝ𝑛𝑛2. The goal is to minimize: 𝐴̅𝐴𝑥𝑥 − �𝑏𝑏 1
Low Rank Approximation (LRA): Given A = ⊗𝑖𝑖=1

𝑞𝑞 𝐴𝐴𝑖𝑖 , find 𝐵𝐵𝐵
such that

𝐵𝐵𝐵 − 𝐴𝐴 𝐹𝐹
2 ≤ 1 + 𝜖𝜖 min

B rank−k
𝐵𝐵 − 𝐴𝐴 𝐹𝐹

2

Problem Our Runtime Prior Runtime 
Regression
𝑝𝑝 = 2 �

𝒊𝒊

𝒏𝒏𝒏𝒏𝒏𝒏 𝑨𝑨𝒊𝒊 �
𝒊𝒊

𝒏𝒏𝒏𝒏𝒏𝒏 𝑨𝑨𝒊𝒊

+𝒏𝒏𝒏𝒏𝒏𝒏(𝒃𝒃) [1]
Regression
𝑝𝑝 ∈ [0,2) �

𝒊𝒊

𝒏𝒏𝒏𝒏𝒏𝒏 𝑨𝑨𝒊𝒊

+𝒏𝒏𝒏𝒏𝒏𝒏(𝒃𝒃)

𝒒𝒒 = 𝟐𝟐,𝒏𝒏𝟏𝟏 = 𝒏𝒏𝟐𝟐:

𝒏𝒏𝟑𝟑/𝟐𝟐𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝒅𝒅𝟏𝟏𝒅𝒅𝟐𝟐
+𝒏𝒏𝒏𝒏𝒏𝒏(𝒃𝒃) [1]

All-Pairs Regression 𝒏𝒏𝒏𝒏𝒏𝒏 𝑨𝑨
(𝑨𝑨 ∈ ℝ𝒏𝒏×𝒅𝒅)

LP with 𝒏𝒏𝟐𝟐
constraints

LRA
�
𝒊𝒊

𝒏𝒏𝒏𝒏𝒏𝒏 𝑨𝑨𝒊𝒊 �
𝒊𝒊

𝒏𝒏𝒏𝒏𝒏𝒏 𝑨𝑨𝒊𝒊 [𝟑𝟑]

Our sketching algorithms rely on solving
min
𝑥𝑥∈ℝ𝑑𝑑

𝑆𝑆(𝐴𝐴𝐴𝐴 − 𝑏𝑏) 𝑝𝑝
𝑝𝑝

Where 𝑆𝑆 ∈ ℝ𝑠𝑠×𝑛𝑛, 𝑠𝑠 ≪ 𝑛𝑛 is a random sketching matrices which 
must depend on the matrix [A,b]. 
 For 𝑝𝑝 = 2 cannot even read b! Our sketches each factor 
𝑅𝑅𝑖𝑖𝐴𝐴𝑖𝑖 by random 𝑅𝑅𝑖𝑖to precondition 𝐴𝐴𝑖𝑖, then estimate and 
sample from leverage scores without reading b.

 For p<2, our main algorithm involves a multi-part sketching 
procedure to sample from the residual error. First, we 
show how to compute a rough approximation  𝑥𝑥𝑥 to the 
optimal. Then, we sample rows 𝑖𝑖 ∈ [∏𝑖𝑖 𝑛𝑛𝑖𝑖] to include in the 
sketch 𝑆𝑆 from the distribution: 𝜌𝜌𝑖𝑖 ∝ 𝐴𝐴𝑥𝑥′ − 𝑏𝑏 𝑖𝑖

𝑝𝑝

Challenge: computing all 𝜏𝜏𝑖𝑖 takes ∏𝑛𝑛𝑖𝑖𝑑𝑑𝑖𝑖 time! To avoid this, 
we utilize tools sketching & sampling tools from streaming: 
Precision Sampling: to reduce sampling from 𝜏𝜏𝑖𝑖 to finding 
heavy hitters & Count-sketch with Dyadic Trick for quickly 
finding heavy hitters after applying precision sampling. 
 Our algorithm for all-pairs ℓ1regression proceeds similarly.
Low Rank Approximation: Use sparse random projections 
matrices 𝑆𝑆𝑖𝑖 to preserve the cost of projections onto small dim. 
Subspaces. Then can just compute a good LRA to:
𝑺𝑺𝟏𝟏 ⊗⋯⊗ 𝑺𝑺𝒒𝒒 𝑨𝑨𝟏𝟏 ⊗⋯⊗𝑨𝑨𝒒𝒒 = 𝑺𝑺𝟏𝟏𝑨𝑨𝟏𝟏 ⊗⋯⊗ 𝑺𝑺𝒒𝒒𝑨𝑨𝒒𝒒

𝒅𝒅
𝒓𝒓

𝒎𝒎𝒏𝒏

𝑟𝑟𝑡𝑡 = our runtime
brute force

, 𝑟𝑟𝑡𝑡′ = our runtime
alg from 1

𝑛𝑛1 = 𝑛𝑛2 = 300 , 𝑑𝑑1 = 𝑑𝑑2 = 15, 𝑛𝑛1𝑛𝑛2 = 90,000
𝑚𝑚 ≔ sketch size (# of rows of  matrix S)

𝑟𝑟𝑒𝑒 = 100
𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑂𝑂𝑂𝑂𝑂𝑂

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑂𝑂𝑂𝑂𝑂𝑂
, 𝑟𝑟𝑒𝑒′ = 100

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[1]

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[1]
.

Experiments run on synthetic data show dramatic runtime improvements 
over both brute-force (optimal) and prior algorithm of [1], with only a mild 
decrease in accuracy.  Error rate of 𝜖𝜖 ≈ .02 achievable with sketch sizes of 
𝑚𝑚 ≈ 𝑛𝑛
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for both ℓ1 and ℓ2 regression.

Our Results

Best known fast LRA algorithm [3] would require 𝑛𝑛𝑛𝑛𝑛𝑛 𝐴𝐴 =
∏𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝐴𝐴𝑖𝑖 time! For the related and special case of 
polynomial kernel LRA, a ∑𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝐴𝐴𝑖𝑖 algorithm was known [4].

Applications

𝒎𝒎 𝑚𝑚/𝑛𝑛 𝒓𝒓𝒆𝒆 𝒓𝒓𝒆𝒆′ 𝒓𝒓𝒕𝒕 𝒓𝒓𝒕𝒕′

ℓ2
8100 .09 2.48% 1.51% 0.05 0.22

12100 .13 1.55% 0.98% 0.06 0.24
16129 .18 1.20% 0.71% 0.07 0.08

ℓ1

2000 .02 7.72% 9.10% 0.02 0.59
4000 .04 4.26% 4.00% 0.03 0.75
8000 .09 1.85% 1.60% 0.07 0.83

12000 .13 1.29% 0.99% 0.09 0.79
16000 .18 1.01% 0.70% 0.14 0.90
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