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Over-constrained £,,-Norm Regression BT R VY T R ST I TTUC Our sketching algorithms rely on solving

: . - p
Givene > 0,4 € R"% h € R™ wheren > d, Regression min [|S(Ax — b)|l,
r d — 9 nnz(A;) nnz(A;) x€R
compute x° € R* such that P = - - Where S € R5*™, s < n is a random sketching matrices which
|[Ax" — ng < (14 €)min||Ax — ng (1) +nnz(b) [1] must depend on the matrix [A,b].
XER® Regression q=21n=n,: > For p = 2 cannot even read b! Our sketches each factor
* p = 2! Least Squares Regression p €[0,2) 2 nnz(4;) R;A; by random R;to precondition A;, then estimate and
* p =1: Least Absolute Deviation Regression -il—nnz(b) n3/2poly(d,d,) sample from leverage scores without reading b.
In this work, we utilize sketching techniques to obtain +nnz(b) [1] » For p<2, our main algorithm involves a multi-part sketching
fast solutions to (1), when the input matrix 4 is a procedure to sample from the residual error. First, we
Kronecker Product of q smaller matrices. All-Pairs Regression nnz(A) LP with n* show how to compute a rough approximation x' to the
(A € R™*4) constraints optimal. Then, we sample rows i € []]; n;] to include in the

sketch S from the distribution: p; « |(Ax" — b);|P
Challenge: computing all 7; takes | [n;d; time! To avoid this,
we utilize tools sketching & sampling tools from streaming:
Precision Sampling: to reduce sampling from ; to finding
heavy hitters & Count-sketch with Dyadic Trick for quickly
finding heavy hitters after applying precision sampling.
» Our algorithm for all-pairs £, regression proceeds similarly.
Low Rank Approximation: Use sparse random projections
matrices S; to preserve the cost of projections onto small dim.
Subspaces. Then can just compute a good LRA to:

(51 X Sq)(Al ® Aq) — (SlAl X Squ)
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Kronecker Products LRA Nanza) | [mnzcapa

Given B € R™% and C € R™*" Kronecker product ‘ l
A =B ® C € RVXAT consists of all nmdr entry-wise Best known fast LRA algorithm [3] would require nnz(4) =

products of the form B ; - Cj. [I;nnz(4;) time! For the related and special case of
I m
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polynomial kernel LRA, a );; nnz(A;) algorithm was known [4].

Applications

Kronecker Product Regression arises in Spline Regression,
Signal Processing, and Multivariate Data fitting. Many
statistical problems can be modeled as Kronecker product
regression, such as rank-regression (all-pairs regression

nm

— r estimation).
— d » Rank Regression: Robust Estimator, minimizing HAx — le
dr more robust than {1: mlnHAx — b”l 3100 .09 2.48% 1.51% 0.05 0.22
More generally, given 4; € R™*%, can define @7, 4; € > Highly successful estimator for regression with both 1 12100 — 1.o0% = 0.98% 0.06 0.24
L= . . 0 0
RNz NgXd1d2dg 204 minimize: heavy tailed and Gaussian error [2]. 16129 18 1.20% 0.71% 0.07 0.08
, and minimize. . . . . ) . ] 2000 02 7.72% 9.10% 0.02 0.59
. q p » Downside: requires solving a LP with n“constraints. This 1000 on 2960 2 00% 003 07
mlrclz”((g)iﬂ Ai)x - b” work: we give much faster algorithms! 4 | B BNy | |
xER p ) 2 . ' 1 3000 .09 1.85% 1.60% 0.07 0.83
Even forming A = (®7_. A;) requires [[ n;d; time! However, > Observe: A =A X1 —1& Ais aKronecker product! 12000 13 1.29%  0.99% 0.09 0.79
[1] shows that a solution x’ to (1) can be found in time sublinear 16000 18 1.01%  0.70% 0.14 0.50
in the size of A. REfe re n Ces . =100 (Errorours — ErrorOPT) T — 100 (Errorours — Error[l])
re 2 . . . e E y e — E .
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Rank Regressmn. Let AeR be the matrix Of a” pair Vlllse 1. Diao, H., Song, Z., Sun, W., & Woodruff, D. P. (2017). Sketching for kronecker product __ourruntime _,  ourruntime B B B _ _
differences of the rows of A € ]RnXd’ and similarly define b E regression and p-splines. In International Conference on Artificial Intelligence and "t = brute force ’ e = alg from [1] ny =np =300, dy =d; =15,nn; = 90,000
2 : Coe - — Statistics. m := sketch size (# of rows of matrix S)
n .
R™ . The goal IS tO minimize: HAX — b Hl 2. Wang, L, Kai, B., & Li, R. (2009). Local rank inference for varying coefficient models.
: : . G _ q N £ ' Journal of the American Statistical Association. Experiments run on synthetic data show dramatic runtime improvements
Low Rank ApprOX|mat|on (LRA) Given A = (®i=1 Al)’ find B 3. Clarkson, K. L., & Woodruff, D. P. (2017). Low-rank approximation and regression in P h y : : : : X :
. . over both brute-force (optimal) and prior algorithm of [1], with only a mild
such that input sparsity time. Journal of the ACM (JACM). _ . . .
: 4. Avron, H., Nguyen, H., & Woodruff, D. (2014). Subspace embeddings for the polynomial decrease in accuracy. Error rate of € = .02 achievable with sketch sizes of
IB'—Allz < (1+¢) B — Al n
F — € B grh? K F kernel. In Advances in Neural Information Processing Systems. m =~ — for both £; and €, regression.
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