Optimal Sketching for Kronecker Product Regression and Low Rank Approximation

Huain Diao[†], Rajesh Jayaram^{*}, Zhao Song^{α}, Wen Sun^{β}, and David Woodruff^{*} CMU^{*}, Northeast Normal University[†], University of Washington^{α}, MSR New York^{β}

Overview

Over-constrained ℓ_p -Norm Regression

Given $\epsilon > 0$, $A \in \mathbb{R}^{n \times d}$ $b \in \mathbb{R}^n$ where $n \gg d$, compute $x' \in \mathbb{R}^d$ such that

$$||Ax' - b||_p^p \le (1 + \epsilon) \min_{x \in \mathbb{R}^d} ||Ax - b||_p^p$$
 (1)

- p = 2: Least Squares Regression
- p = 1: Least Absolute Deviation Regression In this work, we utilize **sketching** techniques to obtain fast solutions to (1), when the input matrix A is a Kronecker Product of q smaller matrices.

Kronecker Products

Given $B \in \mathbb{R}^{n \times d}$ and $C \in \mathbb{R}^{m \times r}$ Kronecker product $A = B \otimes C \in \mathbb{R}^{nm \times dr}$ consists of all nmdr entry-wise products of the form $B_{i,i} \cdot C_{k,s}$

More generally, given $A_i \in \mathbb{R}^{n_i \times d_i}$, can define $\bigotimes_{i=1}^q A_i \in \mathbb{R}^{n_1 n_2 \cdots n_q \times d_1 d_2 \cdots d_q}$, and minimize:

$$\min_{x \in \mathbb{R}^d} \| (\bigotimes_{i=1}^q A_i) x - b \|_p^p$$

Even forming $A = (\bigotimes_{i=1}^q A_i)$ requires $\prod_i^q n_i d_i$ time! However, [1] shows that a solution x' to (1) can be found in time *sublinear* in the size of A.

Rank Regression: Let $\bar{A} \in \mathbb{R}^{n^2 \times d}$ be the matrix of all pair-wise differences of the rows of $A \in \mathbb{R}^{n \times d}$, and similarly define $\bar{b} \in \mathbb{R}^{n^2}$. The goal is to minimize: $\|\bar{A}x - \bar{b}\|_1$

Low Rank Approximation (LRA): Given $A = (\bigotimes_{i=1}^q A_i)$, find B' such that

$$||B' - A||_F^2 \le (1 + \epsilon) \min_{\text{B rank-k}} ||B - A||_F^2$$

Our Results

Problem	Our Runtime	Prior Runtime
Regression $p=2$	$\sum_{i} nnz(A_i)$	$\sum_{i} nnz(A_i) \\ +nnz(b) [1]$
Regression $p \in [0,2)$	$\sum_{i} nnz(A_i) \\ +nnz(b)$	$q = 2, n_1 = n_2$: $n^{3/2}poly(d_1d_2)$ +nnz(b) [1]
All-Pairs Regression	$nnz(A)$ $(A \in \mathbb{R}^{n \times d})$	LP with n^2 constraints
LRA	$\sum_{i} nnz(A_i)$	$\prod_{i} nnz(A_i) [3]$

Best known fast LRA algorithm [3] would require $nnz(A) = \prod_i nnz(A_i)$ time! For the related and special case of polynomial kernel LRA, a $\sum_i nnz(A_i)$ algorithm was known [4].

Applications

Kronecker Product Regression arises in Spline Regression, Signal Processing, and Multivariate Data fitting. Many statistical problems can be modeled as Kronecker product regression, such as **rank-regression** (all-pairs regression estimation).

- > Rank Regression: Robust Estimator, minimizing $\|\bar{A}x \bar{b}\|_1$ more robust than ℓ_1 : $\min \|Ax b\|_1$.
- ➤ Highly successful estimator for regression with both heavy tailed and Gaussian error [2].
- \triangleright Downside: requires solving a LP with n^2 constraints. **This** work: we give much faster algorithms!
- \triangleright Observe: $\overline{A} = A \otimes 1 1 \otimes A$ is a Kronecker product!

References

- 1. Diao, H., Song, Z., Sun, W., & Woodruff, D. P. (2017). Sketching for kronecker product regression and p-splines. In *International Conference on Artificial Intelligence and Statistics*.
- 2. Wang, L., Kai, B., & Li, R. (2009). Local rank inference for varying coefficient models. Journal of the American Statistical Association.
- 3. Clarkson, K. L., & Woodruff, D. P. (2017). Low-rank approximation and regression in input sparsity time. Journal of the ACM (JACM).
- 4. Avron, H., Nguyen, H., & Woodruff, D. (2014). Subspace embeddings for the polynomial kernel. In *Advances in Neural Information Processing Systems*.

Our Results

Our sketching algorithms rely on solving

$$\min_{x \in \mathbb{R}^d} ||S(Ax - b)||_p^p$$

Where $S \in \mathbb{R}^{s \times n}$, $s \ll n$ is a random sketching matrices which must *depend* on the matrix [A,b].

- For p=2 cannot even read b! Our sketches each factor R_iA_i by random R_i to precondition A_i , then estimate and sample from leverage scores without reading b.
- For p<2, our main algorithm involves a multi-part sketching procedure to sample from the *residual error*. First, we show how to compute a rough approximation x' to the optimal. Then, we sample rows $i \in [\prod_i n_i]$ to include in the sketch S from the distribution: $\rho_i \propto |(Ax' b)_i|^p$

Challenge: computing all τ_i takes $\prod n_i d_i$ time! To avoid this, we utilize tools sketching & sampling tools from streaming: **Precision Sampling:** to reduce sampling from τ_i to finding heavy hitters & Count-sketch with Dyadic Trick for quickly finding heavy hitters after applying precision sampling.

 \triangleright Our algorithm for all-pairs ℓ_1 regression proceeds similarly. Low Rank Approximation: Use sparse random projections matrices S_i to preserve the cost of projections onto small dim. Subspaces. Then can just compute a good LRA to:

$$(S_1 \otimes \cdots \otimes S_q)(A_1 \otimes \cdots \otimes A_q) = (S_1 A_1 \otimes \cdots \otimes S_q A_q)$$

Experiments

	m	m/n	r_e	$r_e{'}$	r_t	$r_t{'}$	
ℓ_2	8100	.09	2.48%	1.51%	0.05	0.22	
	12100	.13	1.55%	0.98%	0.06	0.24	
	16129	.18	1.20%	0.71%	0.07	0.08	
ℓ_1	2000	.02	7.72%	9.10%	0.02	0.59	
	4000	.04	4.26%	4.00%	0.03	0.75	
	8000	.09	1.85%	1.60%	0.07	0.83	
	12000	.13	1.29%	0.99%	0.09	0.79	
	16000	.18	1.01%	0.70%	0.14	0.90	

$$r_e = 100 \left(\frac{Error_{ours} - Error_{OPT}}{Error_{OPT}} \right), r_{e'} = 100 \left(\frac{Error_{ours} - Error_{[1]}}{Error_{[1]}} \right).$$

$$r_t = \frac{\text{our runtime}}{\text{brute force}}, \ r_t' = \frac{\text{our runtime}}{\text{alg from [1]}} \ n_1 = n_2 = 300 \ , \ d_1 = d_2 = 15, n_1 n_2 = 90,000 \ m \coloneqq \text{sketch size (# of rows of matrix S)}$$

Experiments run on synthetic data show dramatic runtime improvements over both brute-force (optimal) and prior algorithm of [1], with only a mild decrease in accuracy. Error rate of $\epsilon \approx .02$ achievable with sketch sizes of $m \approx \frac{n}{10}$ for both ℓ_1 and ℓ_2 regression.